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ABSTRACT

An optimal convergence condition for Newton iteration in a Banach space

is established . There exist problems for which the iteration converges but

the complexity is unbounded. We show what stronger condition must be imposed

to also assure “good complexity” .
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1. INTRODUCTION

Numerous papers have analyzed sufficient conditions for the convergence

of algorithms for the solution of non-linear problems. In addition to con-

vergence, we consider another fundamental question . What stronger conditions

must be imposed to assure “good complexity”? This is clearly one of the

crucial issues (in addition to stability) if one is interested in actual com-

putation. We believe it is also a most interesting theoretical question.

We cons ider New ton iteration for a simple zero of a non-linear operator

in a Banach space of f ini te  or infini te dimens ion . We establish the optima l

radiu s of the ball  of convergence with respect to a certain functional. There

exis t problems where the iteration converges but the complexity increases log-

ari thmically to in f in i ty  as the initial iterate approaches the boundary of

the ball of convergence. (This phenomenon does not occur in the Kantorovich

theory of operator equations; see Section 3.) We establish the optima l rad ius

of the ball  of good complexity.

In this paper we limit ourselves to the importan t case of Newton i teration.

In other papers (Traub and Wo~niakowski [76b ) and {~ 71) we study optima l con-

vergence and complexity for classes of i terations.

We sunmiarize the resul ts  of this paper. Definitions and theorems con-

cerning the optimal ball  of convergence are g iven in Section 2. We conc lude

4. this Section by giving conditions under wh ich the radius of the ball  of con-

vergence is a constant f ract ion of the radius of the ball of analyt ic i ty  of

the operator .

Comp lexity of Newton i teration is studied in Section 3. We show that

Newton iteration may converge but have arbi t rar i ly  high complexity and conjec-

ture this is a general phenomenon . We establish the radius of the ball of

good comp lexity as well as a lower bound on the complexity of Newton iteration . 

--- •rn -—- . • • ~~~~•
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• 2 • CONVERGENCE OF NEWTON ITERATION

• We consider the solution of the non-linear equation

(2.1) F(x) — 0

• where F: D C B 1 
- B2 and B 1, B2 are Banach spaces over the real or complex

fields of dimension N, N dim(B 1) — dim(B2 ) ,  1 � N <+~~. We solve (2.1)

by Newton iteration which constructs the sequence as follows

(2.2) x~~1 
= x~ - F’(x

~
)
~~~

(xj)

where x
0 

is an initial guess and i = 0,1 Suppose that F is sufficientiy

regular and o’ is a s imp le zero of (2.1), i.e., F(o’) 0 and F’(or) ’ exists and

is bounded . It is well-known that if x
0 

is suffic iently close to o then

converges to r~ and the order of convergence is two, see , e.g., Kantorovich [48],

• Ortega and Rheinboldt [70) and Rail [69].

In this paper we are interested in sharp bounds on how close x
0 
has to be

to c~’ to ge t quad ra t ic  con ver ge nce of Newton i te ra t ion an d how c lose x0 has to

be to ~~
‘ to guarantee good comp lex i ty .

We begin with a theorem which describes the character of convergence of

Newton i terat ion .

Let ‘t be a simp le zero of F , e i Ib c~- -~ and j  [x: J~c-~fl � r 3~ Assume

F’ (x )  exists and is a Lipschi tz  operator for x E J. Define

(2 .2)  A2 
- A2(~) sup

x ,yEJ

Note that  if F” is continuou s for x ~ J the n



______

fl,t
A2 (r) - sup lfr ’ ’ F”~x) 11

xEJ

which shows that in this case A
2 
is a bound on the “normalized” second derivative.

Let q be any number such that 0 < q < 1.

Theorem 2.1

If F’ is a Lipschitz operator in J,

‘2 3’ A r ~~—~-—
‘ 2 l+2q ‘

(2.4) x0 E .1,

then Newton iteration is well-defined and

(2.5) lim x
i 

= 
~~
, e

i+1 
� qe~ , ~,li ,

(2.6) e
~+1 ~ C1 e~

• where C~ — A2/(l 
- 2A2

e
1
).

If F is continuously twice-differentiable at o then

(2. 7) xi+i - = F’ (~~~~~ “( o) (x 1-~~)
2+ o ( ( ~~

_
~~(F ) .

Proof

The proof is by induction . Let E J and let

(2. 8) R (x ;x i) — ~
‘1{F’(x

1 
+ t (x_ xi

)) — F’ (x i) 3(x_x~)dt.

Define w — w ( x ; x i
) as the polynomial of first degree which interpolates F(x1)

and F’(x~). Then w(x ;x~) F(x~) + F’ (x
i
) (x_x~) and the next approximation

x~~1 
is the zero of w whenever F’(x~) is invertible. From Rail (69, p.124]

we get the error formula
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• (2.9) F(x) — w (x;x.) R(x;x.)

for x E J while due to (2.2),

(2.10) Ifr ’~~
)
~~R(x ;x~)Ii �A 2 I~ -x IF. LI

From the def ini t ion of A2 we have

� 2A~ lk-~ I I � 2A~~ ~~~~~~~~ 
< 1.

This means that F’ (x) is invertible for m y  x € J and x~~ 1 is veil-defined .

Furthermore

� i/u - 2A 2~ c-~ I I ) ,

see Rail [69 , p. 3 6 ) .  We can rewrite the pol ynomial w as w ( x ;x 1
) — F’ (x 1

) (x_x
j +i) .

Set x o’ in (2 .9 ) . Then F ’ ( x . ) ( x .+1
-a) R( r ~; x . )  which yields

A e 2

I~
c
~ 1-~I1 J~’ (x .) 1F’ (~ )F’ ( -~)~~ R( (y ;x .) 

~ ~~~~~~~ ~ 1-2A r e1 
� qe

12 i .  2

due to (2 .3) . This proves (2 .5 )  and (2 .6 ) .

If F”(x) is cont inuous  at  ~ then

R(~ ;x,) = ~~ F”(~)(x1-~
)2 + o(Ik~-~~IF),

F’ (x.) = F’ (~) + O( I~c . -c~II)

wh ich imp lies (2. 7 ) .  I

Remark 2 .1

Theorem 2 .1  states quadrat ic  convergence of Newton iteration s ince •

e i+j �C ~e~ and C~ � A 2 / ( 1  - 2A 2e0) .  it is known (see Ortega and Rhe inboldt
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(70, p.319]) that if F’ is not a Lipschitz operator then Newton iteration

does not possess, in general, quadratic convergence. For instance, apply-

ing Newton iteration to F(x) x + where a = 5/3 we get

e1~ 1 
(a- l)e~/(l + ae~~~). I

Remark 2.2

Theorem 2.1 states how fast Newton iteration converges. The speed of

I
convergence depends on the value of g. This technique based on q seems to be

a
general and can be applied for any iteration. See Traub and Wozniakowski [77]

where the class of interpolatory iterations 
~~ 

n ~ 3, is considered. U

• We show that if we want (2.5) to hold then (2.3) is sharp for any value

of q, 0 < q < 1.

Theorem 2.2

There exists an entire F such that

> and e0 
= F imply e1 > qe0.

for every value of q E (0,1).

Proof

Let F(x) — x + x
2
, x E ~R. Then r~ 0 and A

2
(V) 1. Suppose that

a 
~ > q/(1 + 2q) and let x

0 
-F. The next approximation x1 

constructed

by aewton iteration is equal to x1 = x0 
- F’ (x0)

’F(x0) 
— r2/(l-2r) > qr -qx0

.

Hence e1 > qe 0 . I

• . From theorem 2.1  with  q -. l it follows that Newton iteration converges

whenever
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< 1/3.

We show that there exists a problem F such that A
2
F = 1/3 and e

0 
— r imply

that Newton iteration does not converge.

Theorem 2.3

There exists a problem F where F’ is a Lipschitz operator such that if

A2r= 4and
e
0 = r

then Newton iteration is not convergent.

Proof

Define

r 2
~x -~- x  for x � Ø

(2.11) F(x) “
~~ 2
~x - x  for x �0 .

Then F(0) = 0, F’(O) 1 and F’ is a Lipschitz function ~zit h A 2 (r) 1. Let

4 and x0 -4. Then x
1 

= 4 and x2 = -4. Hence Newton iteration cycles

and is not convergent. U
~~1 

Rail [74] showed that assuming the existence of o and using the Kantorovich

• theorem it is necessary to assume

A2
F ~1 0.15.

Thus we have obtained an improvement by a factor of ‘~ 2.3.

We define optimal convergence number. Let X C !R be a set of

positive numbers r such that for any F with a simple zero ry such that F’ is

a Lipschitz operator in J, A2
F < r implies that an iteration converges

whenever ~0-~II � .
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Definition 2.1

• r
~ 
is called the optimal convergence number (with respect to

A2
)if

rc 
= sup x. U

From theorem 2.1 and theorem 2.3 we have

Corollary 2.1

For Newton iteration

(2.11) r — 1/3. U

Consider the non-linear scaiat equation

g(T’) A2 (r)r , r � 0.

Provided F is not linear, g(F) is strictly increasing , g(O) 0, g(’~) —

Let h denote the inverse function g
1. Then Newton iteration converges

provided J~c~-~ Jj � h(r), r <4 .
• Definit ion 2.2

R is called the optimal radius of the ball of convergence (with respect

to A2
)if

R
~~~~

h( r
~
).

-: Corollary 2.2

For Newton iteration

— h(1/3).

_ _  _ _  _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  J
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Remark 2 .3

Let (P and ~ be any two iterations whose convergence condition is of the

form A
2
(F)F < r. Let r (cp) , r

~
(
~
) denote the optimal convergence numbers of

cpand ~~, and let R (CP), R (’ti) denote the corresponding optima l rad i i  of the

ball of convergence . Then

r(~p) � r (*)

implies
R (~p) � R ( ij,) .• C c

• Therefore the optimal radii of convergence of two iterations can be ordered

if their convergence numbers are ordered. U

In genera l , New ton iteration converges only locally. We give conditions

under which Newto~ iteration enjoys a “type of global ccnvergence”.

Let F(x) = 

~ 

- F(~
)
(~,)(xi

_ .y)1 be analytic in D = [x: ~,c- c4~ <R) and

(2 .12) J~~ t ( ~~)~~~~~ (1)
(~~~~ j 

~ K ’ ’

for i 2 ,3 , . . . ,  R

One way to find K is to use Cauchy ’s formula

where M sup Jf r ’ (~
) 1F(x)Jj . Setting K ~~~~~ ~~ we get WR � 

~~~ � (j~~)
i_l

xED , i-i \~ R I
wh ich yields M R � K

Theorem 2.4

• If F satisfies (2.12) then Newton iteration converges in J — ~x: ~~~~ � r .~
where
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(2.13) F and c
1

Proof

Since I~’( ’T~~
(x) II � f ( I ~-~II) where f(x) ,c/(l - Kx) then

A2 (F) 
F 

~~~~~~ <4
(l— KF)

which yields F — ~~with C~~ ~~~~~ This proves (2.13). U

Note that this result is especially interesting if the domain radius R is

approximately equal to 1/K, say R c2/K. 
Then F = ~~

— R R and Newton
c2

iteration enjoys a “type of global convergence”.

1

V

- - •.--- —-• • •• • --- -——-- •--
~~
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3. COMPLEXITY OF NEWTON ITERATION

In the previous section we showed that the sequence of errors e~ — I~c~-.aII
for Newton iteration sat isf ies

A e
~

• (3.1) e
~+i ~ 

I-~A~e~ 
whenever A2e0 

< 1/3.

We want to find x such that k is the smallest index for which e � c’e wherek k 0

a’, 0 < a’ < 1, is a given number. Define € � € ‘ so that

(3.2) ek 
= €e

0
.

The complexity of Newton iteration , which is the total cost of computing X
K
)

k � 1, is given by

(3.3) comp k . c

I
where c is the cost of one Newton step. (See Traub and Wo€niakowski [76aJ

for a detailed discussion.) Let ~~~~~~ denote the cost of one evaluation of

j — 0 and 1, and let the combinatory cost d be the cost of evaluating

= x~ - F ’( x 1
) 1F(x~ ) .  Then the cost per step is given by

(3.4) c = c(F) + c(F’) + d.

Note that the dimension of the problem N � +~~. For multivariate problems,

N < + , we can assume that each arith~etic operation costs unity and

can denote the total number of arithmetic operations needed to evaluate ~~~

and d d(N) is the cost of the solution of the linear system

F’ (x i
) (xj+j-x j) 

- -F(x,). Hence d(N) O(N~) with ~ 
� 3.



• 
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For the rest of this section N � +~~. Define

A f 2

(3.5) 
~~~~~ l—2A~f~ ’ 

f
0 

e~ , i 0,1 

• Clearly, the sequence [f
t
) is a majorizing sequence of [c

i), 
i.e., e~ �

Wi. Let comp 1 
— k

1
c where k

1 
is the smallest index f or which 

~k ~~ee0 . Of

course , comp � comp 1. Let p = A2
f
0 A2

e
0. Note that comp1 

— cotup
1
(c ,p).

We derive some properties of comp
1 

as p approaches 1/3 (which is the necessary

and suff icient  condition for guaranteeing convergence) .

Lemma 3.1

Let n be any fixed integer. If p 4 - 6 with 6 �—
~~j 

then
4

(3.6) 
~~ 

( 1 - g. 5)f 0 where 0 � g
~ 

� 4
j+l 

4

r ~ for i = 0,1,..., ii.

Proof

Assume by induction that 1. = (1 - g. 6) f
0 
with 0 � � - 4. Since

� f
0 

then g
1 1  

� 0 and

p (I—g15)
2
f0

1—2 p (l—g~ 5)

I • .
which yields after algebraic manipulations

~~~~ 
�4g~ + 9 + 3(g~ 6) 2 ~~4i+2 _

~~~~~ + 3(g~ 6) 2 - ~ 
~~4

i+2 
~~.

This proves (3.6).

We are ready to prove

I L
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• Lei~~a 3.2

• (3.7) ~ lg~~)(1 + o(1)) � ccmp
1

(e ,p) � c 1og~~~(l + o(1) )

• where p 4 - 6 with 6 ~ 0+ and Ig is the logarithm to base 2. U

Proof

Recall that comp 1 
= k1c and we seek bounds on k1. Since

~ A2
f
0 ~~~~~~~~~~~~ 

~0 
— 

f

then

� ~~~~~~~~~~~~~~~~~ = ig ~(1 + o(1)).

This proves the righthand side of (3.7).

Let 6~~ l/4
1
~~

1. From Lemma 3.1 for i = 1,2 , . . . ,U ~k/2J we get

f � (1 - (4 i+1 4)/4n+l)f (1_2
_fl

) f
0

for large n. Thus k
1 

� t.p/2J — ~ lg(-~)(1 + o(1)) which proves the lef thand

4 side of (3.7). U

Lemma 3.2 states the importan t difference between convergence and complex-

ity of the sequence £1~ ) . p < 4 assures convergence of [f 1) but with only

this condition complexity can be arbitrarily (logarithmically) large .

We believe results similar to Lemma 3.2 also hold for comp (rather than

comp
1
) of an arbitrary iteration and therefore propose

Conjecture 3.1

For any superlinear iteration ~ there exists a function F with a simple

J zero ey and a number F, 0 < F <+~ , such that

_ _ _
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(i) the sequence x~~1 = 
~(x19F) constructed by the iteration ~

is convergent to o and I~c~~~
.a’fl < ~c~-c~j, Wi, whenever an

initial approximation is any point of J a [x :  ~c- r4j < r)

• (ii) the complexity comp , wh ich is now a function of x0 and e,
satisfies

lint comp (x01 e) = +~~, tie > 0. U
x
0: I~c~-~II-. r

Conjecture 3.1 states that starting from any point of J we get convergence;

however, comp(x0;s) can be arbitrarily high when x0 approaches the boundary of• t 
J.

We prove Conjecture 3.1 for Newton iteration.

Theorem 3.1

If Newton iteration is applied to

~
. 2• I x + x  for x � 0

(3.8) F(x) 
2

~x - x  f o r x � 0

then for s fixed comp(x
0 , s) tends logarithmically to infini ty as A2 F approaches

l/3 and x
0

a i ’.

Proof

Note that ~ 0 and A2 (F) I, see (2.11). Applying Newton iteration to

(3.8) we get

a 
l-2sign(x

1
)x~ 

and ej+i —

• which is equivalent to (3.5) with A2 1. Let x
0 

— r 4 - 6. From Lemma (3.2)

we get

~

• . —~~--~~-..——— ---~~~~~~
——--- ——- . • -• - _ _ _ _
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• comp (x ,c)
!( 1+o(l)) � � l+o(1) as 8 -. 0.

c lg(-g)

This proves theorem 3.1.

This phenomenon cioes not occur in the Kantorovich theory. If h — (in

the usual notation; see Rail [74]), Newton iteration converges linearly and

the complexity is always bounded for f ixed a. Furthermore the complexity

depends on lg(1/e) rather than lglg(l/c) only if ~ is not a simple 
zero.

Note that F defined in (3.8) is not twice-differentiable at c~. It

• seems to us that comp can tend to infinity as A
2F approaches 1/3 for twice-

differentiable problems . Therefore we propose

Conjecture 3.2

There exists a twice-d i f fe ren t iab le  problem F with a simple zero ~ such

that the comp comp(A
2
r’) of Newton iteration satisfies

lim comp (A2F) 
= +~ U

Theorem 3.1 states that if A
2F is close to 1/3 then complexity can be

arbitrarily large. We seek a bound on A
2F (stronger than A2

r < 1/3) to be

- 
. 

sure that complexity is not too large. Define

(3.9) t max(l , ig 1/c).

Theorem 3.2

If A
2
r � 1/4 then the complexity of Newton iteration satisfies

(3.10) comp � C lg(l+t).

L . ----•-- ~~~~~~--—-—- •- • •-~~~~~~~~ - -~~~~ -- .‘ -~~~~~~~~ •~~~~~~~~~~~-~~~~
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Proof

Let hj+l Kh~ with K A
2/(1 

- 2A
2
e
0
) and h

0 
— e

0. From (3.1), e~ �h~~
Vi. In Traub and Wo~niakowski [76a ) we proved that if w (Ke0

)1 � 2 then

the complexity comp (h) of the sequence (h
i) is bounded by

cotnp(h) � c lg(1+t).

Since comp ~ comp (h) , (3.10) follows. U

Remark 3.1

We have chosen the endpoint w = 2 in the inequality w � 2 only for con-

venience and definiteness. Any value w bounded away from unity can be u8ed

to get a good bound on complexity. S

Theorem 3.2 motivates the definition of the optimal complexity number for

a superlinear iteration. Let Y C ~R be a set of positive numbers r such that

for any F with a simple zero ~ such that F’ is a Lipschitz operator in J,

A~F � r implies that an iteration converges and comp � c lg(l+t), ‘it � 1,

whenever 
~~~~~~~~~~~~~ 

� r.

Definition 3.1

rg 
is called the optimal complexity number (with respect to A2 and the

complexity criterion conip � c lg(l+t)J for a superlinear iteration if

r = s up Y. U
g

Compare with the definition of the optimal convergence number r .  Of

course r � r and from Theorem 3.2 follows that r � 1/4.
g c g
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Theorem 3.3

For Newton iteration

(3.11) r
8 

—

Proof

Let P(x ) — x + x2 . Then F(ry) a 0, F’ (~
) — 1 and A

2F — r. Newton itera-

tion produces [xi) such that

2
xi

(3.12) 
~~~~ 

a 
2l+2x

Let t — 1. Then comp � c which means that e
1 

� e
0
. Set x

0 
— -1’, r

From (3.12) we get

r~~~~1 l

which is equivalent to F � 1/4. Hence A
2
F � r

8 
�~~~ and from theorem 3.2 we

4 conclude rg 
—

-
• Remark 3.2

It follows from Remark 3.1 that as long as A2
T’ is bounded away from 1/3

we are assured of good complexity . U

We summarize our results on optima l convergence number and optimal coin-

plexity number (Corollary 2.1 and Theorem 3.3):

(i) A
2
e
0 < — 1/3 assures convergence but complexity can be arbitrarily

large

(ii) A
2
e
0 
� rg 

— 1/4 assures convergence and good complexity.

____  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -
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)

Definition 3.2

is called the optimal radius of the ball of good complexity [with

respect to A
2 

and comp ~ c lg(l+t) J for a superlinear iteration if

R
g
a h(r

g
). •

Corollary 3.1

For Newton iteration

Rg~~~h(1/4)~ U

Remark 3.3

A remark analogous to Remark 2.3 holds here concerning the ordering of

the optima l radii of good complexity for two iterations. U

The ratio between the optimal radius of the ball of convergence and the

optimal radius of the ball of good Complexity ,

R
C 
= 

h( lj 3)
Rg h(l/4)

indicates what stronger condition must  be imposed to assure good complexity.

We end this paper by deriving a lower bound on the complexity of Newton

iteration. Let F be any operator for which

2
(3.13) ei+1 

� a2e~

for a pos itive a2. We show that the class of such operators is not empty.

Let
F (x) — — — a, a 0 , x ~ 0.

Then 2
e
i+i 

— ae~.
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• Recall that c a c(F) + c(F’) + d is the cost of one Newton step where d

is the cost of solving a l inear system of size N. Let CL and denote lower

and upper bounds on c. If a
2
e
0 ~ l/t, then Theorem 3.1 in Traub and

Wo~niakowsk i [76a ) yields camp � c~ (lst.lgl8t).

We summarize the complexity analysis for Newton iteration.

Theorem 3.4

If 1 1A2 e0 
�~~ and a

2
e
0 

�- ~ H

then the complexity of Newton iteration satisfies

c~ (lg
t_ l8l~ t) � camp � c~ lg(l+t~

where t — inax( 1 , Ig 1/ c).
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